134 research outputs found

    Co-design of output feedback laws and event-triggering conditions for linear systems

    Full text link
    We present a procedure to simultaneously design the output feedback law and the event-triggering condition to stabilize linear systems. The closed-loop system is shown to satisfy a global asymptotic stability property and the existence of a strictly positive minimum amount of time between two transmissions is guaranteed. The event-triggered controller is obtained by solving linear matrix inequalities (LMIs). We then exploit the flexibility of the method to maximize the guaranteed minimum amount of time between two transmissions. Finally, we provide a (heuristic) method to reduce the amount of transmissions, which is supported by numerical simulations

    Minimizing the impact of EV charging on the electricity distribution network

    Full text link
    The main objective of this paper is to design electric vehicle (EV) charging policies which minimize the impact of charging on the electricity distribution network (DN). More precisely, the considered cost function results from a linear combination of two parts: a cost with memory and a memoryless cost. In this paper, the first component is identified to be the transformer ageing while the second one corresponds to distribution Joule losses. First, we formulate the problem as a non-trivial discrete-time optimal control problem with finite time horizon. It is non-trivial because of the presence of saturation constraints and a non-quadratic cost. It turns out that the system state, which is the transformer hot-spot (HS) temperature here, can be expressed as a function of the sequence of control variables; the cost function is then seen to be convex in the control for typical values for the model parameters. The problem of interest thus becomes a standard optimization problem. While the corresponding problem can be solved by using available numerical routines, three distributed charging policies are provided. The motivation is threefold: to decrease the computational complexity; to model the important scenario where the charging profile is chosen by the EV itself; to circumvent the allocation problem which arises with the proposed formulation. Remarkably, the performance loss induced by decentralization is verified to be small through simulations. Numerical results show the importance of the choice of the charging policies. For instance, the gain in terms of transformer lifetime can be very significant when implementing advanced charging policies instead of plug-and-charge policies. The impact of the accuracy of the non-EV demand forecasting is equally assessed.Comment: 6 pages, 3 figures, keywords: electric vehicle charging, electricity distribution network, optimal control, distributed policies, game theor

    Stability analysis of a general class of singularly perturbed linear hybrid systems

    Full text link
    Motivated by a real problem in steel production, we introduce and analyze a general class of singularly perturbed linear hybrid systems with both switches and impulses, in which the slow or fast nature of the variables can be mode-dependent. This means that, at switching instants, some of the slow variables can become fast and vice-versa. Firstly, we show that using a mode-dependent variable reordering we can rewrite this class of systems in a form in which the variables preserve their nature over time. Secondly, we establish, through singular perturbation techniques, an upper bound on the minimum dwell-time ensuring the overall system's stability. Remarkably, this bound is the sum of two terms. The first term corresponds to an upper bound on the minimum dwell-time ensuring the stability of the reduced order linear hybrid system describing the slow dynamics. The order of magnitude of the second term is determined by that of the parameter defining the ratio between the two time-scales of the singularly perturbed system. We show that the proposed framework can also take into account the change of dimension of the state vector at switching instants. Numerical illustrations complete our study

    A TBLMI Framework for Harmonic Robust Control

    Full text link
    The primary objective of this paper is to demonstrate that problems related to stability and robust control in the harmonic context can be effectively addressed by formulating them as semidefinite optimization problems, invoking the concept of infinite-dimensional Toeplitz Block LMIs (TBLMIs). One of the central challenges tackled in this study pertains to the efficient resolution of these infinite-dimensional TBLMIs. Exploiting the structured nature of such problems, we introduce a consistent truncation method that effectively reduces the problem to a finite-dimensional convex optimization problem. By consistent we mean that the solution to this finite-dimensional problem allows to closely approximate the infinite-dimensional solution with arbitrary precision. Furthermore, we establish a link between the harmonic framework and the time domain setting, emphasizing the advantages over Periodic Differential LMIs (PDLMIs). We illustrate that our proposed framework is not only theoretically sound but also practically applicable to solving H 2 and H∞\infty harmonic control design problems. To enable this, we extend the definitions of H 2 and H∞\infty norms into the harmonic space, leveraging the concepts of the harmonic transfer function and the average trace operator for Toeplitz Block operators. Throughout this paper, we support our theoretical contributions with a range of illustrative examples that demonstrate the effectiveness of our approach

    Une approche intrinsèque des observateurs linéaires à entrées inconnues

    Get PDF
    On donne des conditions nécessaires et suffisantes d'existence d'observateurs à entrées inconnues, pour les systèmes linéaires invariants, à temps continu ou discret. Une structure générique valable quel que soit le degré relatif est alors proposé en monovariable, qui peut être étendue au multivariable. Deux exemples, dont l'un avec simulations numériques, sont examinés

    A harmonic framework for the identification of linear time-periodic systems

    Full text link
    This paper presents a novel approach for the identification of linear time-periodic (LTP) systems in continuous time. This method is based on harmonic modeling and consists in converting any LTP system into an equivalent LTI system with infinite dimension. Leveraging specific harmonic properties, we demonstrate that solving this infinite-dimensional identification problem can be reduced to solving a finitedimensional linear least-squares problem. The result is an approximation of the original solution with an arbitrarily small error. Our approach offers several significant advantages. The first one is closely tied to the harmonic system's inherent LTI characteristic, along with the Toeplitz structure exhibited by its elements. The second advantage is related to the regularization property achieved through the integral action when computing the phasors from input and state trajectories. Finally, our method avoids the computation of signals' derivative. This sets our approach apart from existing methods that rely on such computations, which can be a notable drawback, especially in continuous-time settings. We provide numerical simulations that convincingly demonstrate the effectiveness of the proposed method, even in scenarios where signals are corrupted by noise

    Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach

    Get PDF
    International audienceThis work focuses on the design of decentralized feedback control gains that aims at optimizing individual costs in a multi-agent synchronization problem. As reported in the literature, the optimal control design for synchronization of agents using local information is NP-hard. Consequently, we relax the problem and use the notion of satisfaction equilibrium from game theory to ensure that each individual cost is guaranteed to be lower than a given threshold. Our main results provide conditions in the form of linear matrix inequalities (LMIs) to check if a given set of control gains are in satisfaction equilibrium i.e. all individual costs are upper-bounded by the imposed threshold. Moreover, we provide an algorithm in order to synthesize gains that are in satisfaction equilibrium. Finally, we illustrate this algorithm with numerical examples
    • …
    corecore